USBпорт

USBпорт

Заметим, что в терминологии USB пакеты и кадры имеют несколько иную трактовку, нежели в сетях передачи данных. В параллельных шинах имеются возможности явной синхронизации интерфейсной части ведущих и ведомых устройств; исполнение каждого шага протокола обмена может быть подтверждено, и при необходимости некоторые фазы обмена могут продлеваться по «просьбе» не успевающего устройства. В последовательных шинах такой возможности нет — пакет пересылается целиком, а синхронизация возможна только по принимаемому потоку бит. Эти и другие особенности сближают последовательные шины с локальными сетями передачи данных.

Наибольшую популярность имеют шины USB и FireWire, хотя последняя пока что в РСсовместимых компьютерах используется не повсеместно.

Технологии последовательных шин FireWire и USB, имея общие черты, существенно различаются. Обе шины обеспечивают простое; подключение большого числа ПУ (127 для USB и 63 для FireWire ), допуская коммутации и включение/выключение устройств при работающей системе. По структуре топология обеих шин достаточно близка, но FireWire допускает большую свободу и пространственную протяженность. Хабы USB входят в состав многих устройств и для пользователя их присутствие зачастую незаметно. Обе шины имеют линии питания устройств, но допустимая мощность для FireWire значительно выше. Обе шины поддерживают технологию Р n Р (автоматическое конфигурирование при включении/выключении) и снимают проблему дефицита адресов, каналов DMA и прерываний.

Различаются пропускная способность шин и управление ими. Шина USB ориентирована на периферийные устройства, подключаемые к PC . Изохронные передачи USB позволяют передавать цифровые аудиосигналы, а USB 2.0 способна нести и видеоданные. Все передачи управляются централизованно, и PC является необходимым управляющим узлом, находящимся в корне древовидной структуры шины.

Адаптер USB пользователи современных ПК получают почти бесплатно, поскольку он входит в состав всех современных чипсетов системных плат.

Правда, адаптеры USB 2.0 первое время будут выпускаться в виде карт PCI . Непосредственное соединение нескольких PC шиной USB не предусматривается, хотя выпускаются «активные кабели» для связи пары компьютеров и устройства-концентраторы. Шина FireWire ориентирована на устройства бытовой электроники, которые с ее помощью могут быть объединены в единую домашнюю сеть. К этой сети может быть подключен компьютер, и даже не один.

Принципиальным преимуществом шины является отсутствие необходимости в специальном контроллере шины (компьютере). Любое передающее устройство может получить полосу изохронного трафика и начинать передачу по сигналу автономного или дистанционного управления — приемники «услышат» эту информацию. При наличии контроллера соответствующее ПО может управлять работой устройств, реализуя, например, цифровую студию нелинейного видеомонтажа или снабжая требуемыми мультимедийными данными всех заинтересованных потребителей информации. 2. Шина USB USB ( Universal Serial Bus — универсальная последовательная шина) является промышленным стандартом расширения архитектуры PC , ориентированным на интеграцию с телефонией и устройствами бытовой электроники. Шина USB совсем молодая—версия 1.0 была опубликована в начале 1996 года, и скептики иронично расшифровывали ее название как «неиспользуемая последовательная шина» ( Unused Serial Bus ). Однако сейчас устройств с интерфейсом USB уже предостаточно.

Большинство их поддерживает версию 1.1, которая вышла осенью 1998 года — в ней были устранены обнаруженные проблемы первой редакции.

Весной 2000 года опубликована спецификация USB 2.0, в которой предусмотрено 40-кратное повышение пропускной способности шины.

Первоначально (в версиях 1.0 и 1.1) шина обеспечивала две скорости передачи информации: полную скорость FS ( full speed ) — 12 Мбит/с низкую скорость LS ( Low Speed ) — 1,5-Мбит/с. В версии 2.0 определена еще и высокая скорость US ( High Speed ) — 480 Мбит/с, которая позволяет существенно расширить круг устройств, подключаемых к шине. В одной и той же системе могут присутствовать и одновременно работать устройства со всеми тремя скоростями. Шина позволяет соединять устройства, удаленные от компьютера на расстояние до 25 м (с использованием промежуточных хабов). С середины 1996 года выпускаются PC со встроенным контроллером USB, реализуемым чипсетом системной платы.

Подробную и оперативную информацию по USB (на английском языке) можно найти по адресу http://www.usb.org. Здесь приводятся данные, достаточные для понимания принципов работы и возможностей этой перспективной и недорогой шины подключения разнообразной периферии. USB обеспечивает обмен данными между хост-компьютером и множеством периферийных устройств (ПУ). Согласно спецификации USB, устройства ( device ) могут являться: - хабами; - функциями; - их комбинацией. Хаб ( hub ) только обеспечивает дополнительные точки подключения устройств к шине.

Устройство-функция ( function ) USB предоставляет системе дополнительные функциональные возможности, например подключение к ISDN , цифровой джойстик, акустические колонки с цифровым интерфейсом и т. п.

Комбинированное устройство ( compound device ), реализующее несколько функций, представляется как хаб с подключенными к нему несколькими устройствами.

Устройство USB должно иметь интерфейс USB, обеспечивающий полную поддержку протокола USB, выполнение стандартных операций (конфигурирование и сброс) и предоставление информации, описывающей устройство.

Работой всей системы USB управляет хост-контроллер ( host controller ), являющийся программно-аппаратной подсистемой хост-компьютера. Шина позволяет подключать, конфигурировать, использовать и отключать устройства во время работы хоста и самих устройств. Шина USB является хост-центрической: единственным ведущим устройством, которое управляет обменом, является хост-компьютер, а все присоединенные к ней периферийные устройства — исключительно ведомые. В этим она отличается от шины FireWire , где все устройства равноправны.

Физическая топология шины USB — многоярусная звезда. Ее вершиной является хост-контроллер, объединенный с корневым хабом ( root hub ), как правило, двухпортовым. Хаб является устройством-разветвителем. Кроме того, он может являться источником питания для подключенных к нему устройств. К каждому порту хаба может непосредственно подключаться периферийное устройство или промежуточный хаб. Шина допускает до 5 уровней каскадирования хабов (не считая корневого). Поскольку комбинированные устройства внутри себя содержат хаб, их подключение к хабу 6-го яруса уже недопустимо.

Каждый промежуточный хаб имеет несколько нисходящих ( downstream ) портов для подключения периферийных устройств (или нижележащих хабов) и один восходящий ( upstream ) порт для подключения к корневому хабу или нисходящему порту вышестоящего хаба. Логическая топология USB — просто звезда: для хост-контроллера хабы создают иллюзию непосредственного подключения каждого устройства. В отличие от шин расширения ( ISA / EISA , PCI , PC Card ), где программа взаимодействует с устройствами путем обращений по физическим адресам ячеек памяти, портов ввода-вывода, прерываниям и каналам DMA , взаимодействие приложений с устройствами USB выполняется только через программный интерфейс. Этот интерфейс, обеспечивающий независимость обращений к устройствам, предоставляется системным ПО контроллера USB. В отличие от громоздких дорогих шлейфов параллельных шин АТА и особенно шины SCSI с ее разнообразием разъемов и сложностью правил подключения, кабельное хозяйство USB простое и изящное.

Кабель USB содержит одну экранированную витую пару с импедансом 90 Ом для сигнальных цепей и одну неэкранированную для подачи питания (+5 В), допустимая длина сегмента — до -5 м. Для низкой скорости может использоваться невитой неэкранированный кабель длиной до 3 м (он дешевле). Система кабелей и коннекторов USB не дает возможности ошибиться при подключении устройств (рис. 1, а и б). Для распознавания разъема USB на корпусе устройства ставится стандартное символическое обозначение (рис. 1 и рис. 2, а). Гнезда типа «А» устанавливаются только на нисходящих портах хабов, вилки типа «А» — на шнурах периферийных устройств или восходящих портов хабов.

Гнезда и вилки типа «В» используются только для шнуров, отсоединяемых от периферийных устройств и восходящих портов хабов (от «мелких» устройств — мышей, клавиатур и т. п. кабели, как правило, не отсоединяются). Хабы и устройства обеспечивают возможность «горячего» подключения и отключения. Для этого разъемы обеспечивают более раннее соединение и позднее отсоединение питающих цепей по отношению к сигнальным и предусмотрен протокол сигнализации подключения и отключения устройств.

Назначение выводов разъемов USB иллюстрирует табл. 1, нумерация контактов показана на рис. 2, а и б. Рис. 1. Коннекторы USB : a — вилка типа «А»; б— вилка типа «В» а б в Рис.2. Гнезда USB : а— типа «А»; б— типа «В»; в— символическое обозначение

Таблица 1. Назначение выводов разъема USB
Контакт Цепь
1 Vbus
2 D-
3 D+ .
4 GND
В шине используется дифференциальный способ передачи сигналов D + и D - по двум проводам.

Скорость, используемая устройством, подключенным к конкретному порту, определяется хабом по уровням сигналов на линиях D+ и D-, смещаемых нагрузочными резисторами приемопередатчиков: устройства с низкой скоростью «подтягивают» к высокому уровню линию D-, с полной — D+. Подключение устройства HS определяется на этапе обмена конфигурационной информацией — физически на первое время устройство HS должно подключаться как FS . Передача по двум проводам в USB не ограничивается дифференциальными сигналами. Кроме дифференциального приемника каждое устройство имеет линейные приемники сигналов D+ и D-, а передатчики этих линий управляются индивидуально. Это позволяет различать более двух состояний линии, используемых для организации аппаратного интерфейса.

Введение высокой скорости (480 Мбит/с — всего в 2 раза медленнее, чем предлагает технология Gigabit Ethernet ) требует тщательного согласования приемопередатчиков и линии связи. На этой скорости может работать только кабель с экранированной витой парой для сигнальных линий. Для высокой скорости аппаратура USB должна иметь дополнительные специальные приемопередатчики. В отличие от формирователей потенциала для режимов FS и LS передатчики HS являются источниками тока, ориентированными на наличие резисторов-терминаторов на обеих сигнальных линиях.

Скорость передачи данных ( LS , FS или HS) выбирается разработчиком периферийного устройства в соответствии с потребностями этого устройства. Реализация низких скоростей для устройства обходится несколько дешевле (приемопередатчики проще, а кабель для LS может быть и неэкранированной невитой парой). Если в «старой» USB устройства можно было подключать не задумываясь в любой свободный порт любого хаба, то в USB 2.0 появились возможности выбора между оптимальными, неоптимальными и неработоспособными конфигурациями, если используются устройства и хабы разных версий. Хабы USB 1.1 обязаны поддерживать скорости FS и LS , скорость подключенного к такому хабу устройства определяется автоматически по разности потенциалов сигнальных линий. Хабы USB 1.1 при передаче пакетов являются просто повторителями, обеспечивающими прозрачную связь периферийного устройства с контроллером.

Передачи на низкой скорости довольно расточительно расходуют потенциальную пропускную способность шины: за то время, на которое они занимают шину, высокоскоростное устройство может передать данных в 8 раз больше. Но ради упрощения и удешевления всей системы на эти жертвы пошли, а за распределением полосы между разными устройствами следит планировщик транзакций хост-контроллера. В спецификации 2.0 скорость 480, Мбит/с должна уживаться с прежними, но при таком соотношении скоростей обмены на FS и LS «съедят» возможную полосу пропускания шины без всякого «удовольствия» (для пользователя). Чтобы этого не происходило, хабы USB 2.0 приобретают черты коммутаторов пакетов. Если к порту такого хаба подключено высокоскоростное устройство (или аналогичный хаб), то хаб работает в режиме повторителя и транзакция с устройством на HS занимает весь канал до хост-контроллера на все время своего выполнения. Если же к порту хаба USB 2.0 подключается устройство или хаб 1.1, то по части канала от контроллера пакет проходит на скорости HS, запоминается в буфере хаба, а к старому устройству или хабу идет уже на его «родной» скорости FS или LS. При этом функции контроллера и хаба 2.0 (включая и корневой) усложняются, поскольку транзакции на FS и LS расщепляются и между их частями вклиниваются высокоскоростное передачи. От старых (1.1) устройств и хабов все эти тонкости скрываются, что и обеспечивает обратную совместимость.

Вполне понятно, что устройство USB 2.0 сможет реализовать высокую скорость, только если по пути от него к хост-контроллеру (тоже 2.0) будут встречаться только хаб» 2.0. Если это правило нарушить и между ним и контроллером 2.0 окажется старый хаб, то связь может быть установлена только в режиме FS. Если такая скорость, устройство и клиентское ПО устроит (к примеру, для принтера и сканера это выльется только в большее время ожидания пользователя), то подключенное устройство работать будет, но появится сообщение о неоптимальной конфигурации соединений. По возможности ее следует исправить, благо переключения кабелей USB можно выполнять «на ходу». Устройства и ПО, критичные к полосе пропускания шины, в неправильной конфигурации работать откажутся и категорично потребуют переключений. Если же хост-контроллер старый, то все прелести USB 2.0 окажутся недоступными пользователю. В этом случае придется менять хост-контроллер (менять системную плату или приобретать PCI-карту контроллера). Контроллер и хабы USB 2.0 позволяют повысить суммарную пропускную способность шины и для старых устройств. Если устройства FS подключать к разным портам хабов USB 2.0 (включая и корневой), то для них суммарная пропускная способность шины USB возрастет по сравнению с 12 Мбит/с во столько раз, сколько используется портов высокоскоростных хабов. На рис. 3 приведен вариант соединения устройств и хабов, где высокоскоростным устройством USB 2.0 является только телекамера, передающая видеопоток без компрессии.

Подключение принтера и сканера USB 1.1 к отдельным портам хаба 2.0, да еще и развязка их с аудиоустройствами позволяет им использовать полосу шины по 12 Мбит/с каждому. Таким образом, из общей полосы 480 Мбит/с на «старые» устройства (USB 1.0) выделяется 3 х 12 - 36 Мбит/с.

Вообще-то можно говорить и о полосе в 48 Мбит/с, поскольку клавиатура и мышь подключены к отдельному порту хост-контроллера USB 2.0, но эти устройства «освоят» только малую толику из выделенных им 12 Мбит/с.

Конечно, можно подключать клавиатуру и мышь и к порту внешнего хаба, но с точки зрения повышения надежности системные устройства ввода лучше связывать наиболее коротким (по количеству кабелей, разъемов и промежуточных устройств) путем.

Неудачной конфигурацией было бы подключение принтера (сканера) к хабу USB 1.1 — во время работы с аудиоустройствами (если они высокого качества) скорость печати (сканирования) будет падать.

Неработоспособной конфигурацией явилось бы подключение телекамеры к порту хаба USB 1.1. Рис. 3. Пример конфигурации соединений При планировании соединений следует учитывать способ питания устройств: устройства, питающиеся от шины, как правило, подключают к хабам, питающимся от сети. К хабам, питающимся от шины, подключают лишь маломощные устройства — так, к клавиатуре USB, содержащей внутри себя хаб, подключают мышь USB и другие устройства-указатели (трекбол, планшет). 2. Модель и протокол передачи данных Каждое устройство на шине USB (их может быть до 127) при подключении автоматически получает свой уникальный адрес.

Логически устройство представляет собой набор независимых конечных точек ( endpoint ), с которыми хост-контроллер (и клиентское ПО) обменивается информацией.

Каждая конечная точка имеет свой номер и описывается следующими параметрами: · требуемая частота доступа к шине и допустимые задержки обслуживания; · требуемая полоса пропускания канала; · требования к обработке ошибок; · максимальные размеры передаваемых и принимаемых пакетов; · тип передачи; · направление передачи (для передач массивов и изохронного обмена). Каждое устройство обязательно имеет конечную точку с номером 0, используемую для инициализации, общего управления и опроса его состояния. Эта точка всегда оказывается сконфигурированной при включении питания и подключении устройства к шине. Она поддерживает передачи типа «управление». Кроме нулевой точки устройства-функции могут иметь дополнительные точки, реализующие полезный обмен данными.

Низкоскоростные устройства могут иметь до двух дополнительных точек, полноскоростные — до 15 точек ввода и 15 точек вывода (протокольное ограничение). Дополнительные точки (а именно они и предоставляют полезные для пользователя функции) не могут быть использованы до их конфигурирования (установления согласованного с ними канала). Каналом ( pipe ) в USB называется модель передачи данных между хост-контроллером и конечной точкой устройства.

Имеются два типа каналов: - потоки; - сообщения. Поток ( stream ) доставляет данные от одного конца канала к другому, он всегда однонаправленный. Один и тот же номер конечной точки может использоваться для двух поточных каналов — ввода и вывода. Поток может реализовывать следующие типы обмена: -передача массивов; - изохронный; прерывания.

Сообщения ( message ) имеют формат, определенный спецификацией USB. Хост посылает запрос к конечной точке, после которого передается (принимается) пакет сообщения, за которым следует пакет с информацией состояния конечной точки.

Последующее сообщение нормально не может быть послано до обработки предыдущего, но при отработке ошибок возможен сброс не обслуженных сообщений.

Двусторонний обмен, сообщениями адресуется к одной и той же конечной точке. С каналами связаны характеристики, соответствующие конечной точке (полоса пропускания, тип сервиса, размер буфера и т. п.). Каналы организуются при конфигурировании устройств USB. Для каждого включенного устройства существует канал сообщений ( Control Pipe 0), по которому передается информация конфигурирования, управления и состояния.

Протокол. Все обмены (транзакции) с устройствами USB состоят из двух-трех пакетов. Каждая транзакция планируется и начинается по инициативе контроллера, который посылает пакет-маркер ( token packet ). Он описывает тип и направление передачи, адрес устройства USB и номер конечной точки. В каждой транзакции возможен обмен только между адресуемым устройством (его конечной точкой) и хостом.

Адресуемое маркером устройство распознает свой адрес и готовится к обмену.

Источник данных (определенный маркером) передает пакет данных (или уведомление об отсутствии данных, предназначенных для передачи). После успешного приема пакета приемник данных посылает пакет квитирования ( handshake packet ). Последовательность пакетов в транзакциях иллюстрирует рис. 4. Рис. 4. Последовательности пакетов Хост-контроллер организует обмены с устройствами согласно своему плану распределения ресурсов.

Контроллер циклически (с периодом 1,0 ± 0,0005 мс) формирует кадры ( frames ), в которые укладываются все запланированные транзакции (рис. 4). Каждый кадр начинается с посылки маркера SOP ( Start Of Frame ), который является синхронизирующим сигналом для всех устройств, включая хабы. В конце каждого кадра выделяется интервал времени EOF ( End Of Frame ), на время которого хабы запрещают передачу по направлению к контроллеру. В режиме HS пакеты SOF передаются в начале каждого микрокадра (период 125 ± 0,0625 мкс). Хост планирует загрузку кадров так, чтобы в них всегда находилось место для транзакций управления и прерывания.

Свободное время кадров может заполняться передачами массивов ( bulk transfers ). В каждом (микрокадре) может быть выполнено несколько транзакций, их допустимое число зависит от длины поля данных каждой из них. Рис.5 Поток кадров USB Для обнаружения ошибок передачи каждый пакет имеет контрольные поля CRC-кодов, позволяющие обнаруживать все одиночные и двойные битовые ошибки.

Конституционное (государственное) право России

Маркетинг, товароведение, реклама

Психология, Общение, Человек

Менеджмент (Теория управления и организации)

Экономическая теория, политэкономия, макроэкономика

Педагогика

Юридическая психология

Бухгалтерский учет

Искусство

Банковское дело и кредитование

Уголовный процесс

Микроэкономика, экономика предприятия, предпринимательство

Экономика и Финансы

Политология, Политистория

Программное обеспечение

Социология

История

Литература, Лингвистика

Уголовное право

Международные экономические и валютно-кредитные отношения

Техника

Материаловедение

Религия

Культурология

Физика

Физкультура и Спорт

География, Экономическая география

Философия

Программирование, Базы данных

Экскурсии и туризм

Компьютерные сети

Сельское хозяйство

Гражданская оборона

Теория государства и права

Геология

Медицина

Биология

Нероссийское законодательство

Разное

Экономико-математическое моделирование

Химия

Охрана природы, Экология, Природопользование

Технология

Астрономия

Металлургия

Земельное право

Ветеринария

Транспорт

Математика

Военное дело

Конституционное (государственное) право зарубежных стран

Компьютеры и периферийные устройства

Военная кафедра

История отечественного государства и права

Муниципальное право России

Налоговое право

Таможенное право

Геодезия, геология

Право

Москвоведение

История экономических учений

Государственное регулирование, Таможня, Налоги

Банковское право

Музыка

Компьютеры, Программирование

Международное право

Семейное право

Радиоэлектроника

Финансовое право

Биржевое дело

Архитектура

История государства и права зарубежных стран

Историческая личность

Российское предпринимательское право

Гражданское право

Правоохранительные органы

Ценные бумаги

Криминалистика и криминология

Гражданское процессуальное право

Трудовое право

Административное право

Страховое право

Геодезия

Экологическое право

Пищевые продукты

Здоровье

История политических и правовых учений

Подобные работы

Новейшие технологии сканирования. Сканеры специального назначения

echo "Большинство из описанных ниже технологий имеют свой логотип. Часто это позволяет с первого взгляда на коробку определить возможности сканера и некоторые характеристики, которые могут быть «закоп

Устройства визуального отображения данных на основе жидких кристаллов

echo "Однако это были лишь отдельные примеры, не носившие серьезного системного характера. Реальный прорыв в представлении графической информации на экране дисплея произошел в США в рамках военного п

Лазерные принтеры

echo "Однако он тоже обладает свойством, за которое так ценятся лазеры: дает очень узкий направленный пучок когерентного монохроматического излучения. В принтере этот луч используется как тончайшее «п

Современные системные платы

echo "Тщетно пытавшаяся получить лицензию на системную шину GTL+ для создания своих новых процессоров, компания AMD вынуждена была при создании процессоров серии К7 лицензировать шину EV6, применяющую

Использование самодиагностики жестких дисков при их тестировании. технология - S.M.A.R.T.

echo "Жесткий диск - магнитный диск, в котором носителями информации являются круглые алюминиевые пластины, обе поверхности которых покрыты слоем магнитного материала. Эти пластины тесно расположены р

Сканеры

echo "Первые серийные планшетные сканеры, основанные на этой технологии, были выпущены в 1998 году. Главной деталью КДИ-сканера, как и любого планшетного, является сканирующая головка. Сканирующая го

USBпорт

echo "Заметим, что в терминологии USB пакеты и кадры имеют несколько иную трактовку, нежели в сетях передачи данных. В параллельных шинах имеются возможности явной синхронизации интерфейсной части вед

Ксерография

echo "Честером Карлсоном, американским изобретателем из Нью-Йорка. Через 10 лет после этого был выпущен первый аппарат. В середине 50-х гг. была создана первая специализированная фирма RANK XEROX , ко